Physics-Guided Machine Learning

Pierre Gentine – Columbia University Mike Pritchard, Tom Beucler, Yu Cheng, Stephan Rasp, Wenli Zhao

e10

TRANSCENDING DISCIPLINES, TRANSFORMING LIVES

Climate sensitivity

Still substantial spread in model climate sensitivity global T=f(greenhouse gases):

Limits our climate mitigation and management capacity and increases cost Mostly due to **representation of clouds**

ECS = Equilibrium climate sensitivity (T response do CO₂ doubling)

Regional climate sensitivity

Regional climate projection is too uncertain

Using ML for climate

Parameterization: represent (physically or statistically) a physical process that cannot be resolved (e.g. clouds) Typically physically based

 $\frac{\partial \overline{X}}{\partial t}_{|\text{clouds}} = f(\overline{X}) \quad \text{witb} \overline{X} \quad \text{coarse-scale average of} \quad X$

However: it has failed for ~40 years (Randall et al. 2003) This largely **explains intermodal spread in climate projection**

Using ML for climate

Parameterization: Difficulty

• Many orders of magnitude in scales: mm to 10⁴ km

• Major numerical challenge for a long time to come (not just cloud resolving)

• How can we buy us time? and (hopefully) learn on the way?

Using ML for climate

Resolving scales in the atmosphere

- We can now resolve many processes \bullet
- Limited time and domain size + need subgrid scale (SGS) model \bullet

How can we solve this issue? Take advantage of **cloud-resolving simulations** (~1km, **alleviate most biases** but very expensive)

Not "physical" but **Data-driven approach** (informed by cloud-resolving simulations)

Temperature $\overline{T}(z)$ Specific humidity $\overline{q}(z)$ Surface sensible heat flux \overline{H} Surface evaporation \overline{E} Surface pressure $\overline{P_s}$

Gentine P., Pritchard M., Rasp S., Reinaudi G., *GRL*, 2018 Rasp, Pritchard and Gentine, *PNAS* 2018 Brenowitz and Bretherton, *GRL*, 2018 Cost function: misfit to coarse-grained high-res. model

Dav: 0 - Hour: 0.0 SPCAM PREC SPCAM OLR **Coarse-grained** Cloud-resolving Model (superparameterization) mm/h W/m CLOUDBRAIN PREC CLOUDBRAIN OLR Machine 0 learning Coarse-resolution model Difference PREC Difference OLR W/m²

10 times cheaper than original coarse model, 1000 less expensive than high-res model Question: generalization to unforeseen conditions? Climate change

Good hydrologic cycle

10 | *ML4Earth*

Gentine P., Pritchard M., Rasp S., Reinaudi G., *GRL*, 2018 Rasp, Pritchard and Gentine, *PNAS* 2018

11 | *ML4Earth*

Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018 Rasp, Pritchard and Gentine, PNAS 2018

lssues

1. Physical Constraints

Energy conservation Mass conservation Only approximate with ML

lssues

2. Generalization

ML has mostly been about interpolations using lots of data, poor extrapolation

13 | *ML4Earth*

-60 -30

0

Latitude

30 60

Issues

2. Generalization

Using both OK and +4K

15 | ML4Earth

Using both OK and +4K

16 | ML4Earth

Summary of issues with brute force ML

Do not respect physical laws
e.g. conservation of energy and mass
→ strict requirement

2. Issue with out-of-sample generalization Important for many climate applications e.g. extremes, climate change

Potential Overcoming Strategies

For knowledge-driven see Yang... Gentine 2019 ERL, or Jia,..., Kumar 2018 ArXiv

Hybrid approaches

Constraining physics within ML

1. Convection

Energy and mass conservations

Impose them within NN as function of inputs (x) and outputs (y):

$$\left\{ \boldsymbol{C} \left[\begin{array}{c} x \\ y \end{array} \right] = 0 \right\}$$

2 equations: reduce NN degrees of freedom to n-2 degrees of freedom

The Fu Foundation School of Engineering and Applied Science

19 | ML4Earth

Beucler, Pritchard, Rasp, Gentine, PRL, submitted

Warm climate +8K generalization experiment

20 | *ML4Earth*

Warm climate +8K generalization experiment Pure ML (deep NN)

21 | *ML4Earth*

22 | *ML4Earth*

23 | *ML4Earth*

Hybrid approaches

Using physical knowledge – ... – output flux rescaling Further improvements

Constrained physics + improved generalization ©

24 | ML4Earth

Conclusions

Machine learning is an appealing approach for subgrid parameterizations

Working example Deep clouds (convection)

Issues:

1. Conservations, physical invariances, physical laws

2. Generalization

Solution: Hybrid physical+ML approaches appear as powerful tool to tackle this

THANK YOU

Questions?

pg2328@columbia.edu

26 | *ML4Earth*

A hope

27 | ML4Earth

Figure 3: Today's ESMs (left) represent key climate processes such as clouds only coarsely (~100km resolution). LEAP will Store Fundation Science