

The Common Community Physics Package (CCPP): a shared infrastructure for model physics for operations and research

Dom Heinzeller^{1,3,5}, Grant Firl^{2,3}, Ligia Bernardet^{1,3}, Laurie Carson^{2,3}, Man Zhang^{1,3,5}, Jack Kain⁴

¹ NOAA/ESRL Global Systems Laboratory
 ² NCAR Research Applications Laboratory;
 ³ Developmental Testbed Center
 ⁴ NOAA National Severe Storms Laboratory
 ⁵ University of Colorado Cooperative Institute for Research in Environmental Sciences

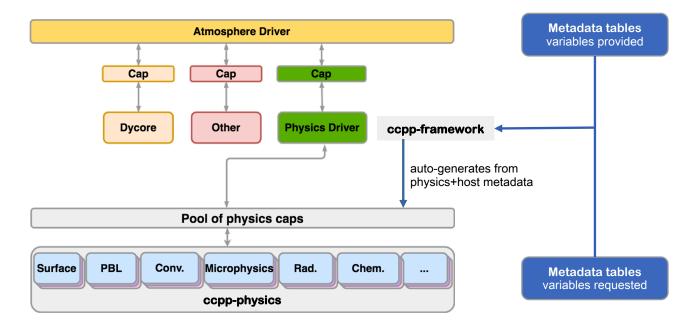
6th ENES HPC Workshop, 05/28/2020

NOAA's Unified Forecasting System

The Unified Forecast System (UFS)

- is a community-based, coupled comprehensive earth system modeling system
- is designed to provide numerical guidance for applications in the forecast suite of NOAA's National Centers for Environmental Prediction (NCEP)
- spans local to global domains and predictive time scales from hours to years
- provides the foundation for closing the gap between ECMWF and NCEP

One cornerstone of the UFS is to **facilitate the improvement of physical parameterizations** and their transition from research to operations by enabling the community to participate in the development and testing.


Infrastructure for development of model physics

The Common Community Physics Package (CCPP) consists of an infrastructure component, **ccpp-framework,** and a collection of compliant physics suites, **ccpp-physics**.

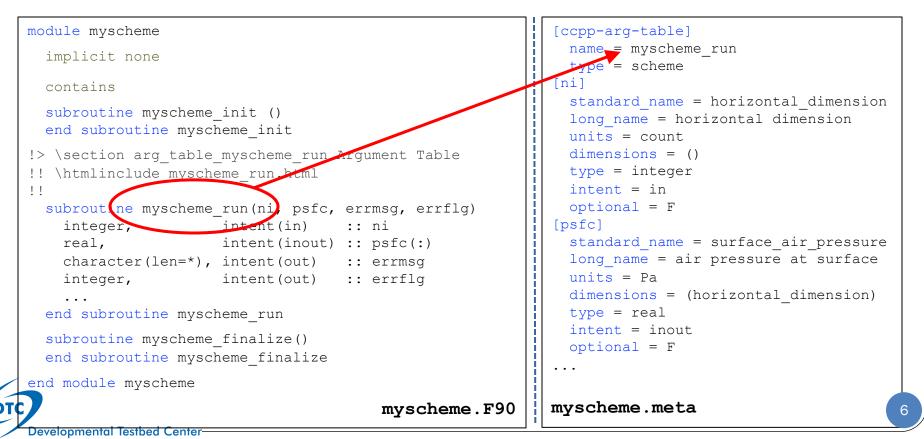
Driving principles:

- Readily available and well supported: open source, on GitHub, accepting external contributions (review/approval process)
- Model-agnostic to enable collaboration and accelerate innovations
- Documented interfaces (metadata) facilitate using existing schemes adding new schemes or transferring them between models
- Physics suite construct (vetted combination of schemes) is important, but the CCPP must enable easy interchange of schemes within a suite
- Scientific documentation generated from inline doxygen markup and metadata

The CCPP within the model system

- ccpp-framework/auto-generated caps replace traditional physics drivers
- glue code between physics in drivers needs to become interstitial schemes

Developmental Testbed Center


Key features of the CCPP

- **Compile-time configuration**: suite definition file (XML)
- **Grouping**: schemes can be called in groups with other computations in between (e.g. dycore, coupling)
- Subcycling/iterations: schemes can be called at higher frequency than others/dynamics
- **Ordering**: user-defined order of execution of schemes (may require changing interstitial code)

```
<suite name="GFS v15p2">
  <proup name="radiation">
 </group>
  <proup name="physics">
   <!-- Surface iteration loop -->
    <subcycle loop="2">
      <scheme>lsm_noah</scheme>
    </subcycle>
  </group>
</suite>
```


Writing a CCPP-compliant parameterization is easy

Metadata is used for scientific documentation

CCPP Scientific Documentation: GFDL Cloud Microphysics Module

CCPP Scientific Documentation v4 0

Q. Search

Modules

GFDL Cloud Microphysics Module

This is cloud microphysics package for GFDL global cloud resolving model. The algorithms are originally derived from Lin et al. (1983) [106]. most of the key elements have been simplified/improved. This code at this stage bears little to no similarity to the original Lin MP in zetac, therefore, it is best to be called GFDL microphysics (GFDL MP), More...

Detailed Description

GFS Near-Surface Sea Temperatu GFS Simple Ocean Scheme Modul Author

GFS RRTMG Longwave Module

GFS Surface Layer Scheme Modul

GFS Three-layer Thermodynomic

GFS Hybrid Eddy-Diffusivity Mass

GFS Orographic Gravity Wave Dra

GFS Rayleigh Damping Module

RRTMG Aerosols Module RRTMG Astronomy Module

RRTMG Clouds Module

RRTMG Gases Module RRTMG Surface Module RRTMG dcvc2t3 Module

GFS Noah LSM Model

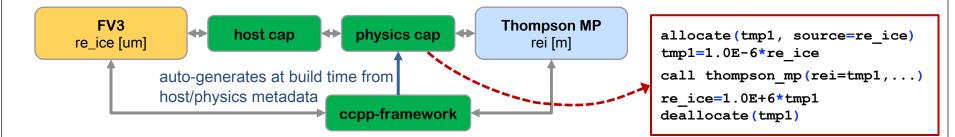
Shian-Jiann Lin, Linjiong Zhou

The module contains the GFDL cloud microphysics (Chen and Lin (2013) [31]). The module is paired with GFDL In-Core Fast Saturation Adjustment Module, which performs the "fast" processes.

▶ GFS Scale-aware TKE-based Mois The subroutine executes the full GFDL cloud microphysics. CIRES Unified Gravity Wave Physic

Argument Table

GFS Ozone Photochemistry (201)									
	local_name	standard_name	long_name	units	type	dimensions	kind	intent	optional
 GFS Water Vapor Photochemical I GFS Scale-Aware Mass-Flux Deer 	levs	vertical_dimension	number of vertical levels	count	integer	0		in	False
 GFS Scale-Aware Mass-Flux Shal 	im	horizontal_loop_extent	horizontal loop extent	count	integer	0		in	False
GFS Convective Cloud Diagnostic	con_g	gravitational_acceleration	gravitational acceleration	m s-2	real	0	kind_phys	in	False
GFDL Cloud Microphysics Module GFC Provide The Discourse Control	con_fvirt	ratio_of_vapor_to_dry_air_gas_constants_minus_one	rv/rd - 1 (rv = ideal gas constant for water vapor)	none	real	0	kind_phys	in	False
 GFS Precipitation Type Diagnostic GFS Stochastics Physics Module 	con_rd	gas_constant_dry_air	ideal gas constant for dry air	J kg-1 K-1	real	0	kind_phys	in	False
Morrison-Gettelman MP Driver M	frland	land_area_fraction_for_microphysics	land area fraction used in microphysics schemes	frac	real	(horizontal_dimension)	kind_phys	in	False
CSAW adjustment Module	garea	cell_area	area of grid cell	m2	real	(horizontal_dimension)	kind_phys	in	False
 Chikira-Sugiyama Cumulus Schei Grell-Freitas Convection Scheme 	islmsk	sea_land_ice_mask	sea/land/ice mask (=0/1/2)	flag	integer	(horizontal_dimension)		in	False
GSD MYNN-EDMF PBL Scheme Me	gq0	water_vapor_specific_humidity_updated_by_physics	water vapor specific humidity updated by physics	kg kg-1	real	(horizontal_dimension, vertical_dimension)	kind_phys	inout	False
GSD RUC LSM Model	gq0_ntcw	cloud_condensed_water_mixing_ratio_updated_by_physics	cloud condensed water mixing ratio updated by physics	kg kg-1	real	(horizontal_dimension, vertical_dimension)	kind_phys	inout	False
Aerosol-Aware Thompson MP Mc	gq0_ntrw	rain_water_mixing_ratio_updated_by_physics	moist mixing ratio of rain updated by physics	kg kg-1	real	(horizontal_dimension, vertical_dimension)	kind_phys	inout	False
GFS Physics Function Module GFS Physics Parameter Module	gq0_ntiw	ice_water_mixing_ratio_updated_by_physics	moist mixing ratio of cloud ice updated by physics	kg kg-1	real	(horizontal_dimension, vertical_dimension)	kind_phys	inout	False
GFS Physics Constants Module	gq0_ntsw	snow_water_mixing_ratio_updated_by_physics	moist mixing ratio of snow updated by physics	kg kg-1	real	(horizontal_dimension, vertical_dimension)	kind_phys	inout	False
GFS RRTMG Constants Module	gq0_ntgl	graupel_mixing_ratio_updated_by_physics	moist mixing ratio of graupel updated by physics	kg kg-1	real	(horizontal_dimension, vertical_dimension)	kind_phys	inout	False
Mersenne Twister Module Files	gq0_ntclamt	cloud_fraction_updated_by_physics	cloud fraction updated by physics	frac	real	(horizontal_dimension, vertical_dimension)	kind_phys	inout	False
P rites	gt0	air_temperature_updated_by_physics	air temperature updated by physics	к	real	(horizontal_dimension, vertical_dimension)	kind_phys	inout	False


Generated by (0) (1.8.11

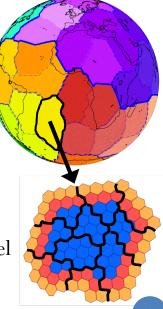
https://dtcenter.org/gmtb/users/ccpp

CCPP provides options for performance and flexibility

- CCPP uses a multi-suite static build to maintain the required performance for operations
 - Compile options for the UFS (and DTC's Single Column Model SCM): SUITES="abc, xyz, ..."
 - Filters unused schemes and variables, and auto-generates Fortran caps for each of the suites
- CCPP supports automatic unit conversions to expedite development and transition

Parallelization in CCPP: limited MPI, full threading

Overarching paradigms

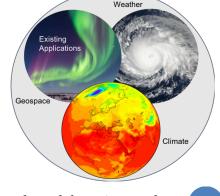

- physics are column-based, no communication during time integration in physics
- physics initialization/finalization can not be called by multiple threads

MPI

- MPI communication only allowed in the physics initialization/finalization
- use MPI communicator provided by host model, not MPI_COMM_WORLD

OpenMP

- time integration (but not init./final.) can be called by multiple threads
- threading inside physics is allowed, use # OpenMP threads provided by host model

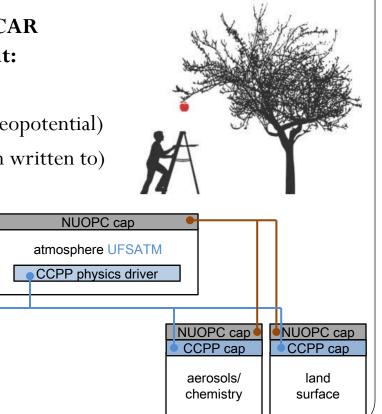

NOAA–NCAR Memorandum of Agreement (2019)

In 2019, NOAA and NCAR agreed to jointly develop the CCPP framework as a single system to communicate between models and physics.

NCAR contributions to the CCPP framework (within SIMA*):

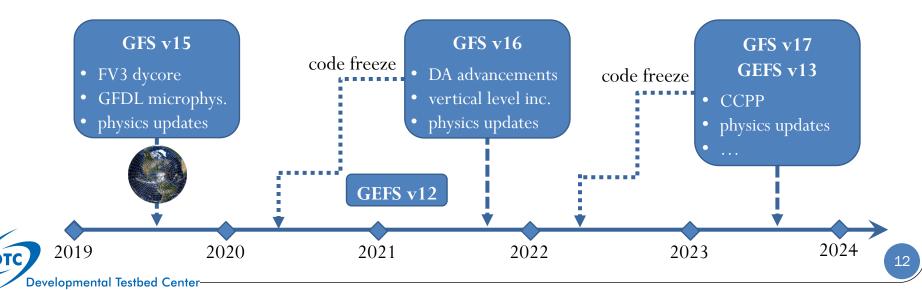
- Augmented metadata standard to provide information on
 - Coordinate variables and vertical direction
 - Dimensions and index ordering of arrays
 - State variables, tendencies, persistent variables
 - Tracers and what to do with them (e.g. advection)
- Automatic variable allocation for variables used by physics only
- Compare metadata to actual Fortran code
- Improved build system and code generator

Developmental Testbed Center



*SIMA: System for Integrated Modeling-Atmosphere 10

A bounty of low- (and higher-)hanging fruit


The existing CCPP framework capabilities and the NCAR contributions provide opportunities for development:

- Automatic array transformations (i,j,k to i,k to k,i to ...)
- Calculation of derived variables (pot. temp. from temp. & geopotential)
- Detect logical flaws in suites (read variable that has not been written to)
- Automated saving of physics scheme state for restarts
- Extended diagnostic output capabilities from schemes
- Creation of CCPP or NUOPC cap for physics, run either inline or as a separate component (required for UFS)
- Generation of optimized caps to dispatch physics on CPUs, GPUs, ... (required for next-generation HPCs)

CCPP is part of the authoritative UFS code repository

- Merged into the authoritative UFS Weather Model code repository in July 2019
- CCPP physics are bit-for-bit identical with existing physics with reproducibility compiler flags
- Scheduled for operational implementation in the GFS/GEFS 2024
- Part of the UFS Medium-Range Weather App public release in March 2020

CCPP Public Releases

V	Date	Physics	Host		
v1	2018 Apr	GFS v14 operational	SCM		
v2	2018 Aug	GFS v14 operational updated	SCM		
		GFDL microphysics	UFSWM for developers		
v3	2019 Jul	GFS v15 operational	SCM		
		Developmental schemes/suites	UFSWM for developers		
v4	2020 Mar	GFS v15 operational	SCM		
		Developmental schemes/suites	UFS WM		
		(incl GFS v16 developmental)	UFS MRW		
CCPP v4: <u>https://dtcenter.org/ccpp</u>					
 Docs: Scientific Doc, Users Guide, Technical Documentation, FAQ Helpdesk: <u>gmtb-help@ucar.edu</u> UFS Users' Support Forums: <u>https://forums.ufscommunity.org</u> SCM – CCPP Single Column Model UFS WM – UFS Weather Model UFS MRW – UFS Medium-Range Weather App 					

UFS Users' Support Forums: <u>https://forums.ufscommunity.org</u>

Developmental Testbed Center-

CCPP v4 supported suites

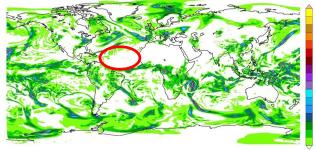
	Operational	Experimental			
	GFS_v15p2	GFS_v16beta	csawmg*	GSD_v1 *	
Microphysics	GFDL	GFDL	M-G3	Thompson	
Boundary Layer	K-EDMF	TKE EDMF	K-EDMF	saMYNN	
Surface Layer	GFS	GFS	GFS	GFS	
Deep convection	SAS	SAS	Chikira-Sugiyama	Grell-Freitas	
Shallow Convection	SAS	SAS	SAS	MYNN and GF	
Radiation	RRTMG	RRTMG	RRTMG	RRTMG	
Gravity Wave Drag	uGWP	uGWP	uGWP	uGWP	
Land Surface	Noah	Noah	Noah	RUC	
Ozone	NRL 2015	NRL 2015	NRL 2015	NRL 2015	
H ₂ O	NRL	NRL	NRL	NRL	

Additional parameterizations and suites are under-development. * with SCM only

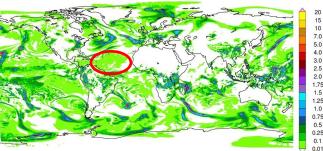
Developmental Testbed Center

Parameterizations in ccpp-physics master

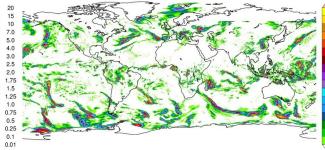
Microphysics	Zhao-Carr, GFDL (incl. sat adj in dycore), MG2-3, Thompson, F-A			
PBL	K-EDMF, TKE-EDMF, moist TKE-EDMF, YSU, saYSU, MYJ			
Surface Layer	GFS, MYNN, MYJ	Implementation		
Deep Convection	saSAS, Chikira-Sugiyama, GF, Tiedtke	DTC		
Shallow Convection	EDMF, GF, Tiedtke	NOAA GSL		
PBL and Shal Convection	SHOC, MYNN	NOAA PSL		
Radiation	RRTMG, <mark>RRTMGP</mark>	NOAA EMC		
Gravity Wave Drag	GFS orographic, GFS convective, uGWD, RAP/HRRR drag suite			
Land Surface	Noah, Noah-MP, RUC			
Ocean	Simple GFS ocean			
Sea Ice	Simple GFS sea ice			
Ozone	2006 NRL, 2015 NRL			
H ₂ O	NRL			


Collaboration with NRL NEPTUNE

- CCPP has been implemented in NEPTUNE by NRL team
- Experiments with NEPTUNE have been conducted with various physics suites


Total precipitation (explicit + parameterized) for 60-h forecast (mm/h)

Suite 4 improves drizzle bias


NEPTUNE 32 km CCPP Suite 4

NEPTUNE 32 km CCPP GFSv14

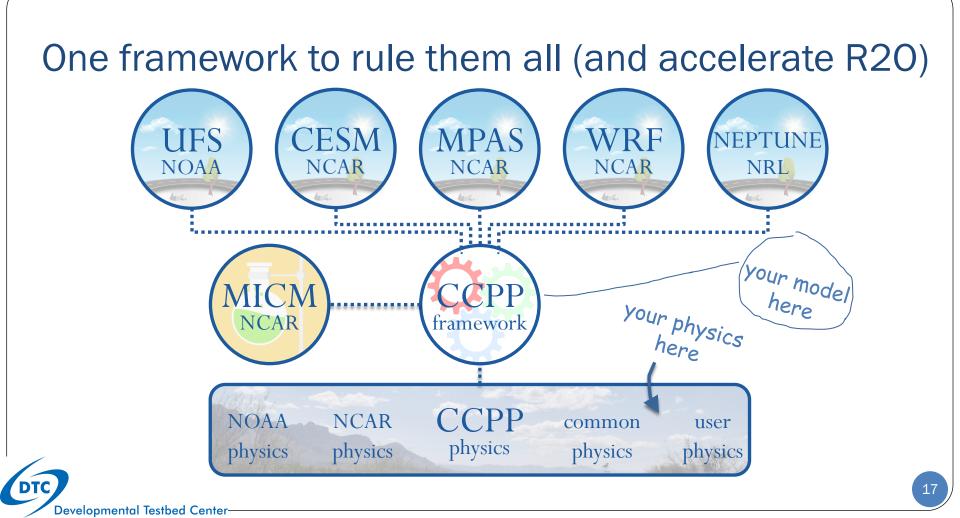
Observations: NASA IMERG L3 10 km V06

Courtesy of Matus Martini (Devine) Alex Reinecke, Jim Doyle (NRL)

7.0 5.0 4.0

3.0 2.5

2.0 1.75 1.5 1.25


1.0 0.75 0.5 0.25 0.1

[mm/6h]

2.5

2.0 1.75 1.5

1.25 1.0 0.75 0.5 0.25 0.1

