
Software development for performance in
the Energy Exascale Earth System Model

Robert Jacob

Argonne National Laboratory

Lemont, IL, USA

(Conveying work from many people in the E3SM project.)

E3SM: Energy Exascale Earth System Model
• 8 U.S. DOE labs + universities. Total ~50 FTEs spread

over 80 staff
• Atmosphere, Land, Ocean and Ice (land and sea)

component models
• Development and applications driven by DOE-SC mission

interests: Energy/water issues looking out 40 years
• Computational goal: Ensure an Earth system model

will run well on upcoming DOE pre-exascale and
exascale computers

• https://github.com/E3SM-Project/E3SM
– Open source and open development

• http://e3sm.org

https://github.com/E3SM-Project/E3SM
http://e3sm.org/

E3SM v1 (released April, 2018)
• New MPAS Ocean/Sea Ice/Land Ice components
• Atmosphere

– Spectral Element (HOMME) dynamical core
– Increased vertical resolution: 72L, 40 tracers.
– MAM4 aerosols, MG2 microphysics, RRTMG radiation,

CLUBBv1 boundary layer, Zhang-McFarlane deep convection.

• Land
– New river routing (MOSART), soil hydrology (VSFM), dynamic rooting distribution, dynamic

C:N:P stoichiometry option

• 2 Resolutions:
– Standard: Ocean/sea-ice is 30 to 60km quasi-uniform. 60L, 100km atm/land
– High: Ocean/sea-ice is 6 to 18 km, 80L, 25 km atm/land. Integrations ongoing

• Code: Fortran with MPI/OpenMP (including some nested OpenMP threading)
Golaz, J.-C., et al. (2019). ”The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution.” J. Adv.
Model. Earth Syst., 11, 2089-2129. https://doi.org/10.1029/2018MS001603

https://doi.org/10.1029/2018MS001603

E3SM v2 Development
E3SMv2 was supposed to incorporate minor changes compared to v1
• Not quite… significant structural changes have taken place
• Tri-grid configuration

– Land and river component now on separate common ½ deg grid
– Increased land resolution, especially over Northern land areas
– Enables closer coupling between land and river model: water management, irrigation, inundation, …
– 3 grids: atmosphere, land/river, ocean/sea-ice.

• Non-hydrostatic atm dynamical core with semi Lagrangian (SL) tracer transport
• Phys-grid (reduced Finite-Volume grid for atmosphere physics) (2x speedup)
• RRM (regionally refined meshes) capability in Atmosphere, Ocean, and Sea ice.
• Improved MPAS-ocean numerics (3D GM, Redi mixing)
• More….
But computational approach will not change much
• Still Fortran with MPI/OpenMP
• Will do most of simulations on CPU systems including ones dedicated to the project.

– 420 Skylake node system at PNNL, 520 AMD node system coming to Argonne this Fall.

• Scheduled for release Sept, 2021.

U.S. Exascale Architecture Roadmap

• NERSC:
– Now: Cori-KNL, Intel KNL, 28 PF peak
– Perlmutter Phase 1: late 2020

• 1500 CPU-GPU nodes, 256 GB
• 1 AMD Milan + 4 NVIDIA A100 GPU

– Perlmutter Phase 2: mid 2021
• 3000+ CPU-only nodes
• 2 AMD Milan per node, 512 GB
• 84-118PF total (phase 1 and 2)

• ALCF:
– Now: Theta, Intel KNL, 11PF peak
– Aurora21: 1.0 EF, late 2021

• 2 Intel Xeon "Sapphire Rapids" + 6 Intel Xe GPU
• OLCF:

– Now: Summit, 2 IBM Power9 + 6 NVIDIA v100s GPU 200PF
– Frontier: 1.5EF, late 2021-early 2022

• 1 AMD EPYC + 4 AMD Radeon GPU

V1

2012

2015

2020

2025

0.7M/year

V0
1 SYPD

0.4 SYPD
7M/year

V1

V2
5 SYPD?

OLCF ALCF NERSC E3SM
E

3
S

M

V1

V2

E
3
S

M
−

M
M

F
 (

E
C

P
)

V0

M
ir

a

E
d

is
o

n

N
E

R
S

C
−

9

1.8M/year

SciDAC4
CANGA: Tasked−based parallelism
COMPOSE: atm dycore
DEMSI: sea ice
PROBSLR: land ice

Multiscale (RRM)

CMDV−SM

E3SM Nonhydrostatic
PISCEES (land ice)

LEAP−T (SL transport)

kokkos dycore

statistical testing
concurrent phys/dyn

new coupler

DOE Exascale Roadmap

V3

V4

T
it

a
n

V2

V1
1.4 SYPD
3.9M/year

V0
2 SYPD
1.5M/year

S
u

m
m

it

C
o

ri
−

K
N

L

T
h

et
a

F
ro

n
ti

er

A
u

ro
ra

5 SYPD?

1.1 SYPD
V1

0.9M/year
2.8 SYPD

Exascale Strategy -> GPU Strategy

Pe
rlm

ut
te

r

E3SM Computational Performance Strategy
• Focus on simulation regimes where GPU systems

can outperform similar size CPU systems
• GPU systems require large amount of work per

node in order to outperform CPU systems (per watt)
– We have a good understanding of GPU performance

based on detailed benchmarks of parts of the code
(especially the Atmosphere dycore HOMME)

• E3SM has excellent MPI performance allowing us to
obtain throughput by running in the strong scaling
limit (little work per node).
– In this regime, GPUs are not competitive with CPUs.

• Will need to run on possibly 3 different GPUs.
0.1

1

10

18 36 72 144 288 576 1152 2304

Si
m

ul
at

ed
 Ye

ar
s P

er
 D

ay

Number of nodes

Preliminary performance results:
V1 (May 2018, April 2019)

Power9 (1 thread/core)
GPU (6 V100/node)
Ivy Bridge (Edison)
KNL (Cori)

Two science regimes that allow a E3SMv3 where GPUs
outperform CPUs
• Ultra-high resolution atmosphere

– 3km resolutions and higher: plenty of work per node to keep the GPU happy if entire
atmosphere model runs on GPU.

– At these resolutions, GPU systems could be up to 3x faster than CPUs (per Watt)
– Large U.S. exascale allocation would allow O(100) simulated years per calendar year.
– Can start to examine many large uncertainties in climate models but with SDPD
– E3SM “SCREAM” project will take this on

• Super-parameterized atmosphere
– GPUs will also allow us to increase complexity with proportionally less increase in cost
– Use super-parameterization and put the 2D CRM on the GPU.
– Could still get multiple SYPD while providing benefits of resolved convection/clouds (to the

limit of the 2D CRM)
– E3SM-MMF project (part of ECP) will take this on

How do we do all this on multiple vendor’s GPUs?

Performance Portability Strategy for E3SMv3
Programming models have (somewhat) reduced the barrier for GPU
programming. E3SM will support 2 going forward.

• OpenMP4.5/5.0 directives in Fortran
– OpenMP 4.5 has GPU target offload and available in some Fortran compilers.

– OpenMP 5.0 standard includes unified memory. Not fully implemented yet in any Fortran
compiler.

– OpenACC/CUDA not future-proof enough (but working great on Summit!)

• C++ and Kokkos
– Template programming model that use C++11 language features. From Sandia NL.

– Backends for CUDA, OpenMP, Pthreads, HIP, and SYCL/DPC++

– Similar technology:

• “Raja”/“Umpire” from Lawrence Livermore NL

• “YAKL” Yet Another Kernel Launcher (https://github.com/mrnorman/YAKL)

Ultra-high res atm implementation strategy (SCREAM)

9

Ef
fo

rt
 (∝

He
ig

ht
 o

f B
ox

)

time into project
July ‘19 July ‘20 July ‘21

0

100%

July ‘18

v3
 F

ea
tu

re
 F

re
ez

e
Ju

ly
 ’2

2

v3
 C

ou
pl

ed
 R

un
s s

ta
rt

 Ju
ly

 ‘2
3

P3 in F90

SHOC in F90

RRTMGP in E3SM

New C++ Physics Coupler

Nonhydrostatic F90 dycore

SCORPIO @ ne1024

Explore climate of F90 version at ne1024

ne1024 grids
Port Parameterizations to C++/Kokkos

and Develop Unit Tests
Porting Planning

SCREAMv0

SCREAMv1

Tu
ne

/e
xp

lo
re

C+

+
m

od
el

we are here

Get resolution and new physics (SHOC, P3) working in Fortran code base.
Port physics subroutine by subroutine to C++, building tests along the way.
Call C++ versions from Fortran as they are completed
Design/build C++ driver for full C++ atmosphere dynamics and physics.

Status: SCREAMv0 (Fortran, no GPU code)

10

Fig: Snapshot of precipitation (color) and liquid water path (opacity
with opaque white = 200 g m-2) after 2.5 simulated days.

North America

Russia

By Chris Terai

• Goal: DYAMOND Phase 2 Intercomparison
• Includes ~10 global storm-system resolving

models (GSRMs)
• 40 day run starting Jan 20, 2020
• Results due Jan 1, 2021

• Ne1024pg2 (full physics) gets 5.2 simulated
days per wallday on 3072 nodes (32%) of
Cori-knl at NERSC
• without performance optimization
• ⇒ 40 day run costs 22.7M NERSC hrs

• Simulated world looks like earth
• Need more in-depth validation

SCREAM approach to converting Fortran to C++/Kokkos

Or
ig

in
al

 F9
0

Po
rt

ed
 to

 C
++

/K
ok

ko
s

• Start with a single Fortran function or
subroutine within a physics package (e.g. P3)

• Convert to C++ with Kokkos.
• Write a C interface too because Fortran can

not directly call C++
• From the working Fortran, call the C++ version

of the single subroutine via the C interface.
• For testing, call both the

original Fortran (on the CPU
single threaded) and the C++
(on the GPU threaded) and
compare answers. Can be
bit-for-bit (with some effort)

• Repeat
• While doing this, write the

physics package driver in
C++ and call all the pieces
you’ve ported.

• Also write the C++
atmosphere main driver.

.
11

SCREAMv1 so far
• C++ version of nonhydrostatic (NH)

dycore done and working
• Used for recent Gordon-Bell submission

(figure on right)
• Gets 0.97 SYPD using all of Summit

(4068 nodes) (354 SDPD)
• Does not include semi-Lagrangian

advection ⇒ further speed up!

• RRTMGP C++ done (with YAKL, not
Kokkos) and starting to interface.

• P3 C++ port almost done
• SHOC C++ port starting now.

12

Fig: Nonhydrostatic C++ dycore-only NGGPS timings at
ne3072 (blue) and ne1024 (other colors).

18 SDPD

Super-parameterized E3SM (SP-E3SM)
E3SM with a super-parameterized atmosphere.
An embedded 2D cloud resolving model (CRM) is used to
represent sub-grid processes (Convection, Microphysics,
Turbulent mixing)

To accelerate SP-E3SM use both hardware and algorithmic
speedup:

● Refactoring the code to enhance parallelism for GPU (also
helps the CPU).

● CRM mean-state acceleration reduces the number of CRM
time steps needed per GCM time step

● The amount of radiative calculations are reduced by using
4 groups of 16 CRM columns rather than calculating
radiation in all columns individually

SP-Atmosphere GPU Implementation Strategy
1. Clean up the original CRMFortran code

– Put all routines in modules, fix bugs through valgrind and bounds checking
2. Expose more parallelism

– Extra dimension added to all variables to allow multiple CRM instances to run in
parallel

– Move if-statements to expose all loops in a tightly nested manner
– Push all looping down the call stack to avoid function calls on the GPU

3. Decorate with GPU parallel loop directives (OpenACC)
– Required fixing / working around a number of PGI compiler bugs

4. Handle race conditions
– Identify race conditions and handle through reduction clauses and atomics

5. Optimize data movement with CUDA managed memory and prefetching

From Matt Norman

SP-E3SM progress so far

• Completed full port of the CRM with OpenACC
– 20,000 lines of code, using Fortran/openACC
– 98% of the Atmosphere cost (reduced radiation configuration)
– Was working on Titan, now Summit

• Early Science Award on Summit
– Used 350K NODE hours (1024 nodes)
– High-res ne120 (0.25 degree) exterior (GCM) resolution – highest

resolution explored with superparameterization.
– 1km 2D CRM. 256x1x58
– Completed 7 year simulation (results on right). 0.5 SYPD

The diurnal cycle of precipitation is
improved in SP-E3SM similar to what Mike

Pritchard has shown in SP-CAM

SP-E3SM Summit Performance; next steps
• Given enough work, GPU speed-up is > 15x over

the Power9 CPUs on Summit
• However, with typical workloads, speed-up is lower

due to lack of parallelism per node from strong
scaling.

• We found 100% weak scaling efficiency if using a "3D”
CRM (64x64x58) and fix 169 CRMs on each node
(simulation speed is flat with node count)

• Port OpenACC version to OpenMP
– Can leverage OpenACC-2-OpenMP Source-to-Source

translator: https://github.com/naromero77/ACC2OMP
– Keep both OpenACC and OpenMP in same source

• Explore more C++/YAKL options
– Recently completed a C++/YAKL port of CRM

next steps

https://github.com/naromero77/ACC2OMP

GPU porting for MPAS components (ocean, sea-ice)
• Keep the Fortran and add directives

• Extended OpenACC (for Summit) coverage across model
• ~2x overall performance improvement

• Change MPAS framework/data model
• Currently uses memory pool approach with linked lists pointing to sub-domain structures
• Converting to contiguous memory blocks and eliminating sub-domain blocking
• Keeping static mesh arrays on device

• Making use of asynchronous execution within MPAS-ocean
• Overlapping data transfers with computation

• Sea-ice is an extreme case
• Sea-ice could not provide enough work to make acceleration feasible
• Use asynchronous execution within E3SM to run sea-ice on unused CPU cores while ocean and

other components run on GPU device

Peter Caldwell (PI), Andy Salinger, Luca Bertagna, Hassan Beydoun, Peter
Bogenschutz, Andrew Bradley, Aaron Donahue, Chris Eldred, Jim Foucar, Chris
Golaz, Oksana Guba, Ben Hillman, Rob Jacob, Jeff Johnson, Noel Keen, Jayesh
Krishna, Wuyin Lin, Weiran Liu, Kyle Pressel, Balwinder Singh, Andrew Steyer,
Mark Taylor, Chris Terai, Paul Ullrich, Danqing Wu, Xingqiu Yuan

SCREAM developers

SP-E3SM developers
Mark Taylor (PI, SNL) ANL: Jayesh Krishna, Danqing Wu, Nichols Romero, Xingqiu
Yuan, CSU: David Randall, Don Dazlich, Mark Branson, LANL: Philip Jones, Rob
Aulwes, Henry Moncada, Matt Turner, LLNL: David Bader, Walter Hannah,
Jungmin Lee, ORNL: Matthew Norman, Sarat Sreepathi, Marcia Branstetter,
PNNL: Ruby Leung, Mikhail Ovchinnikov, Chris Jones, Guangxing Lin, SNL:
Andrew Bradley, Chris Eldred, Ben Hillman, UCI: Mike Pritchard, Hossein Parishani

Acknowledgments
This research was supported by the E3SM Project (DOE-SC BER) and the
Exascale Computing Project (DOE-SC ASCR and DOE NNSA,17-SC-20-SC).

This research used resources of the Oak Ridge Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-AC05-
00OR22725 AND resources of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of Science User Facility
operated under Contract No. DE-AC02-05CH11231 AND resources of the Argonne
Leadership Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC02-06CH11357

